Ku-dependent non-homologous end-joining as the major pathway contributes to sublethal damage repair in mammalian cells

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ku-dependent non-homologous end-joining as the major pathway contributes to sublethal damage repair in mammalian cells.

PURPOSE Sublethal damage repair (SLDR) is a type of repair that occurs in split-dose irradiated cells, which was discovered more than 50 years ago. However, due to conflicting reported data, it remains unclear which DNA double-strand break (DSB) repair pathway, non-homologous end-joining (NHEJ) repair, homologous recombination repair (HRR) or both, contributes to SLDR, particularly in human cel...

متن کامل

Modeling Damage Complexity-Dependent Non-Homologous End-Joining Repair Pathway

Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several repair proteins such as Ku, DNA-PKcs, and XRCC4. It has been experimentally shown that the choice of NHEJ proteins is determined by the complexity of DSB. In this paper, we built a mathematical model, based on published data, to study how NHEJ depends on the damage complexity. Und...

متن کامل

Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells

The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ con...

متن کامل

Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells

Double-strand break (DSB) repair pathways are critical for the maintenance of genomic integrity and the prevention of tumorigenesis in mammalian cells. Here, we present the development and validation of a novel assay to measure mutagenic non-homologous end-joining (NHEJ) repair in living cells, which is inversely related to canonical NHEJ and is based on the sequence-altering repair of a single...

متن کامل

Non-homologous end joining as a mechanism of DNA repair

In spite of its essential role as the carrier of genetic information, DNA is not an inert structure. The genome is susceptible to potentially mutagenic threats of both endogenous and environmental origin. A dramatic threat to the covalent structure of DNA is posed by breaks in the phosphate backbone affecting one or both strands of the Watson–Crick double helix. Ionizing radiation and certain c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Radiation Biology

سال: 2015

ISSN: 0955-3002,1362-3095

DOI: 10.3109/09553002.2015.1075178